Sensitivity analysis for interactions under unmeasured confounding
نویسندگان
چکیده
منابع مشابه
Sensitivity analysis for interactions under unmeasured confounding.
We develop a sensitivity analysis technique to assess the sensitivity of interaction analyses to unmeasured confounding. We give bias formulas for sensitivity analysis for interaction under unmeasured confounding on both additive and multiplicative scales. We provide simplified formulas in the case in which either one of the two factors does not interact with the unmeasured confounder in its ef...
متن کاملSharp sensitivity bounds for mediation under unmeasured mediator-outcome confounding
It is often of interest to decompose the total effect of an exposure into a component that acts on the outcome through some mediator and a component that acts independently through other pathways. Said another way, we are interested in the direct and indirect effects of the exposure on the outcome. Even if the exposure is randomly assigned, it is often infeasible to randomize the mediator, leav...
متن کاملBayesian sensitivity analysis for unmeasured confounding in observational studies.
We consider Bayesian sensitivity analysis for unmeasured confounding in observational studies where the association between a binary exposure, binary response, measured confounders and a single binary unmeasured confounder can be formulated using logistic regression models. A model for unmeasured confounding is presented along with a family of prior distributions that model beliefs about a poss...
متن کاملSensitivity analysis for causal inference under unmeasured confounding and measurement error problems.
In this article, we present a sensitivity analysis for drawing inferences about parameters that are not estimable from observed data without additional assumptions. We present the methodology using two different examples: a causal parameter that is not identifiable due to violations of the randomization assumption, and a parameter that is not estimable in the nonparametric model due to measurem...
متن کاملA flexible, interpretable framework for assessing sensitivity to unmeasured confounding
When estimating causal effects, unmeasured confounding and model misspecification are both potential sources of bias. We propose a method to simultaneously address both issues in the form of a semi-parametric sensitivity analysis. In particular, our approach incorporates Bayesian Additive Regression Trees into a two-parameter sensitivity analysis strategy that assesses sensitivity of posterior ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics in Medicine
سال: 2011
ISSN: 0277-6715
DOI: 10.1002/sim.4354